Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Mark N. Callender

Mark N. Callender

Middle Tennessee State University, USA

Title: UAS Propeller/rotor sound pressure level reduction through leading edge modification

Biography

Biography: Mark N. Callender

Abstract

Manned aviation is regulated by the Federal Aviation Administration (FAA) in order to provide for safe, secure, efficient, and environmentally responsible aviation in the United States. One environmental issue regulated by the FAA is the noise created by aircraft. Federal Aviation Regulation (FAR) Title 14 Part 36 deals specifically with sound pressure levels (SPL) according to aircraft type when the aircraft are in close proximity to the ground. Minimizing aircraft noise helps to maintain positive relationships between the aviation community and the general public. Unmanned aircraft systems (UAS) are a very rapidly growing segment of the aviation industry within the National Airspace System (NAS); however, there is currently no regulation for UAS SPL. The UAS are regulated, as of August 29, 2016, such that they are mandated to be in close proximity to the ground (no higher than 400 ft). As with manned aircraft, UAS produce high levels of SPL, much of which is due to the propellers/rotors. The combination of close proximity to the ground, high SPL, and increasnig UAS density will most certainly result in a negative public reaction. In order to minimize the audible impact of UAS, the author sought to minimize the SPL of small UAS propellers/rotors via leading edge modifications. The modification consisting of a leading edge comb was inspired by one of the three characteristics found on the flight feathers of certain owls: leading edge comb, trailing edge tuft, and upper surface porosity. The modifications were able to successfully reduce SPL while maintaining constant levels of thrust over a wide range of rpm.