Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Fred Barez

Fred Barez

San Jose State University, USA

Title: In-Situ manufacturing in route to space exploration

Biography

Biography: Fred Barez

Abstract

The surge of interest in space exploration to reach various planets in our galaxy would create opportunities for mankind to develop products and processes for low orbit and deep space long duration travels. In such cases, product malfunction in missions such as those to Mars may jeopardize the safety of the astronauts and termination of such missions. In this talk, a novel approach to develop in-situ manufacturing is developed in creating a workshop in orbit as a mobile repair and production center. The same workshop could be placed on the surface of a planet in preparation of establishing colonies of habitations. The approach taken in this study would require development of Modular Manufacturing Systems (MMS), where manufacturing process takes place in one and the astronaut as the supervisor will operate in the other in developing a solution for cost-effective placement of modular units in orbit for in-situ manufacturing. The self-contained modular units can be configured to meet payload transportation requirements, and to accommodate a wide range of space-based manufacturing needs. The MMS is designed to provide a safe in-situ environment for manufacturing and operational capabilities while meeting the challenges of outer space including radiation, temperature, and pressure contingencies. With current interest in long-term exploration of space including the creation of habitats on the Moon and Mars, MMS is designed to make all aspects of this endeavor possible cost effectively and safely. The MMS is constructed in the form of a cylindrical vessel that can be configured to contain one of many different sliding floor-mounted equipment assemblies. A functional manufacturing system consists of at least two such modules, one housing the astronauts with a sliding floor configured to provide the basic requirement of an astronaut such as life support system and environmental controls (temperature, pressure) as well as communications and control systems, and the adjoining modular to house a sliding floor containing the robotic machine fabrication equipment, raw materials and tooling. These two separate modules are connected such that the astronauts can safely supervise and control the manufacturing operation via visual through a viewing port as well as the cameras at various stages. This will allow astronauts to prepare set up, monitor and initiate automatic machining and fabrication of parts using tracked-robotic equipment. Since space-based manufacturing is a very new endeavor, astronaut safety must be a primary concern. The design of the MMS provides critical safety separation, override and supervision features. A modular manufacturing system could be configured to a variety of applications such as habitats for space travelers or a work/live environment for scientific/manufacturing space in providing a safe and sustainable habitat for deep space long duration missions.